

FLUENCE OS

Bringing unparalleled visibility and control to your storage system The 6th Generation Fluence Operating System (OS) is a fully integrated operations platform that combines comprehensive controls, asset management, and system visibility at a single site or across an entire fleet.

Manage storage system operations according to preset modes and access real-time information through multiple system views, and interfaces.

Fluence OS Features

SYSTEM CONTROLS

Actively manage power and operational modes at the Array, Core, and Node levels with easy access to system KPIs.

APPLICATION STACKING

Increase revenue generating opportunity by stacking multiple dispatch applications on top of each other.

REAL-TIME ALARMS

Alarms proactively notify operators to system issues and anomalies with time-stamped details.

APPLICATION SCHEDULING

Schedule multiple market dispatch applications with all relevant timing and operating parameters.

CHARGE PREVENTION

Prevent charging during select days and hours to avoid peak pricing or comply with network requirements.

EMBEDDED SAFETY

Fluence OS continuously monitors, detects, and alerts operators to potential anomalies in the system.

Comprehensive data collection at every level of the storage system provides real-time insights and enables 24/7 remote monitoring and support.

Fluence OS Monitoring

DATA RETENTION

30,000+ data points are collected for a typical 20 MW system. Data is retained locally on-site and regularly backed up to the cloud per project requirements.

SYSTEM LIMIT ANALYSIS

A range of system limits, including cell, BMS and PCS voltage, temperature, SOC, SOH, humidity and more, are continuously analyzed to ensure safe operation.

REMOTE MONITORING

All systems are built with 24/7 remote monitoring and control capabilities to detect potential issues before they occur and alert operators for immediate action.

Proprietary and confidential. Do not distribute. Information in this document is subject to change without notice. Performance may vary depending on use, conditions, applications, and specific configuration.

Controls Architecture

The Fluence OS architecture uses embedded logic and application rules to turn outside market signals into efficiently dispatched power.

MARKET DISPATCH UNIT (MDU)

The Market Dispatch Unit dispatches real and reactive power to the Array controller as generated by the active applications.

ARRAY CONTROLLER

The Array Controller presents the storage Array as a single battery to the MDU; aggregating all Cores in the system. Dispatch signals sent from the MDU are distributed to the Cores.

CORE CONTROLLER

The Core Controller aggregates Nodes from the isolation transformer down, present/ command collection of Nodes. Dispatch signals sent from Array are distributed to the Nodes.

NODE CONTROLLER

The Node Controller directly connects to each PCS, BSC/BMS/Batteries system.

Controls Specifications

NETWORK AND CYBER SECURITY	SYSTEM DATA POINTS	RTU PROTOCOLS	DISPATCH APPLICATIONS
VPN-based remote site access	2,000 points collected per Array*	Modbus	Power Factor Regulation
Multifactor authentication	3,000 points collected per Core*	DNP3	Voltage Regulation
High grade, 256-bit encryption		IEC 60870-5-104	Primary Frequency Control
Enterprise-class network security			Secondary Frequency Control
Weekly vulnerability scanning	SOFTWARE USER ROLES	SERVICE MODES	Peak Shaving
Data transfer over secure VPN tunnels	Observer	Automatic Resource Control (ARC)	Primary Fast Frequency Response
	Operator	Manual	Non-Spinning Reserve
	Lead Operator	Idle	Renewable Firming
	Administrator	Disconnect	Dynamic VAR Support
* Approximate, varies by system configuration		Reset	

Proprietary and confidential. Do not distribute. Information in this document is subject to change without notice. Performance may vary depending on use, conditions, applications, and specific configuration.

